
 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -63

Anonymous Aggregator Election and Data Aggregation in
Wireless Sensor Networks

N.K.Prema,

Research Scholar/CSE, PRIST University, Thanjavur,Tamil Nadu
Dr.A.Arul Lawrence S.K

Professor /CSE, Rajiv Gandhi Institute of Technology, Bangalore -32

Abstract - Wireless sensor and actuator networks are potentially useful building blocks for cyber-physical systems. Those
systems must typically guarantee high-confidence operation, which induces strong requirements on the dependability of their
building blocks, including the wireless sensor and actuator network. Dependability means resistance against both accidental
failures and intentional attacks, and it should be addressed at all layers of the network architecture, including the networking
protocols and the distributed services built on top of them, as well as the hardware and software architecture of the sensor and
actuator nodes themselves. Within this context, in this paper, I focus on the security aspects of aggregator node election and
data aggregation protocols in wireless sensor networks.

Keywords: Wireless sensor Networks, protocols, communication

1. INTRODUCTION

Data aggregation in wireless sensor networks helps to improve the energy efficiency and the scalability of the network. It is
typically combined with some form of clustering. A common scenario is that sensor readings are first collected in each cluster
by a designated aggregator node that aggregates the collected data and sends only the result of the aggregation to the base
station. In another scenario, the base station may not be present permanently in the network, and the aggregated data must be
stored by the designated aggregator node in each cluster temporarily until the base station can eventually fetch the data. In both
cases, the amount of communication, and hence, the energy consumption of the network can be greatly reduced by sending
aggregated data, instead of individual sensor readings, to the base station. While data aggregation in wireless sensor networks
is clearly advantageous with respect to scalability and efficiency, it introduces some security issues. In particular, the
designated aggregator nodes that collect and store aggregated sensor readings and communicate with the base station are
attractive targets of physical node destruction and jamming attacks. Indeed, it is a good strategy for an attacker to locate those
designated nodes and disable them, because he can prevent the reception of data from the entire cluster served by the disabled
node. Even if the aggregator role is changed periodically by some election process, some security issues remain, in particular
in the case when the base station is off-line and the aggregator nodes must store the aggregated data temporarily until the base
station goes on-line and retrieves them. More specifically, in this case, the attacker can locate and attack the node that was
aggregator in a specific time epoch before the base station fetches its stored data, leading to permanent loss of data from the
given cluster in the given epoch.

In order to mitigate this problem, I introduced the concept of private aggregator node election, and I proposed the first private
aggregator node election protocol. Briefly, the first protocol ensures that the identity of the elected aggregator remains hidden
from an attacker who observes the execution of the election process. However, this protocol ensures only protection against an
external eavesdropper that cannot compromise sensor nodes, and it does not address the problem of identifying the aggregator
nodes by means of traffic pattern analysis after the election phase. In the second protocol, I addressed the shortcomings of the
first scheme: I proposed a new private aggregator node election protocol that is resistant even to internal attacks originating
from compromised nodes, and I also proposed a new private data aggregation protocol and a new private query protocol which
preserved the anonymity of the aggregator nodes during the data aggregation process and when they provide responses to
queries of the base station. In the second private aggregator node election protocol, each node decides locally in a probabilistic
manner to become an aggregator or not, and then the nodes execute an anonymous veto protocol to verify if at least one node
became aggregator. The anonymous veto protocol ensures that non-aggregator nodes learn only that there exists at least one
aggregator in the cluster, but they do not learn any information on its identity. Hence, even if such a non-aggregator node is
compromised, the attacker learns no useful information regarding the identity of the aggregator. The protocols can be used to
protect sensor network applications that rely on data aggregation in clusters, and where locating and then disabling the
designated aggregator nodes is highly undesirable. Such applications include high-confidence cyber-physical systems where
sensors and actuators monitor and control the operation of some critical physical infrastructure, such as an energy distribution
network, a drinking water supply system, or a chemical pipeline. A common feature of these systems is that they have a large
geographical span, and therefore, the sensor network must be organized into clusters and use in-network data aggregation in
order to ensure scalability and energy efficient operation.
 Moreover, due to the mission critical nature of these applications, it is desirable to prevent the identification of the aggregator
nodes in order to limit the impact of a successful attack against the sensor network. The first protocol that resist only an
external eavesdropper is less complex than the second protocol that works in a stronger attacker model.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -64

Hence, the first protocol can be used in case of strong resource constraints or when the risk of compromising sensor nodes is
limited (e.g., it may be difficult to obtain physical access to the nodes). The second protocol is needed when the risk of
compromised and misbehaving nodes cannot be eliminated by other means. The remainder of the paper is organized as
follows: in Section 1.2, I introduce my system and attacker models. In Section 1.3, I present my basic aggregator election
protocol which can withstand external attacks, while in Section 1.4, I introduce my advanced protocols, which can withstand
internal aggregator identification and scamming attackers as well. In Section 1.5, I give an overview of some related work, and
in Section 1.6, I conclude the paper and sketch some future research directions.

1.2 System and attacker models

A sensor network consists of sensor nodes that communicate with each other via wireless channels. Every node can generate
sensor readings, and store it or forward it to another node. Each node can directly communicate with the nodes within its radio
range; those nodes are called the (one-hop) neighbors of the node. In order to communicate with distant nodes (outside the
radio range), the nodes use multi-hop communications. The sensor network has an operator as well, who can communicate
with some of the nodes through a special node called base station, or can communicate directly with the nodes if the operator
moves close to the network. Throughout the paper, a data driven sensor network is envisioned, where every sensor node sends
its measurement to a data aggregator regularly. Such data driven networks are used for regular inspection of monitored
processes notably in critical infrastructures. Event driven networks can be used for reporting special usually dangerous but
infrequent events like fire in a building. There is no need of clustering and data aggregation in event based systems, thus
private cluster aggregator election and data aggregation is not applicable there. The third kind of network is the query driven
network, where the operator sends a query to the network, and the network sends a response. This kind of functionality can be
used with data driven networks, and can have privacy consequences, like the identity of the answering node should remain
hidden. In the following, it is assumed, that the time is slotted, and one measurement is sent to the data aggregator in each time
slot. The time synchronization between the nodes is not discussed here, but a comprehensive survey can be found in. It is
assumed that every node shares some cryptographic credentials with the operator.

These credentials are unique for every node, and the operator can store them in a lookup table, or can be generated from a
master key and the node’s identifier on demand. The exact definition of the credentials can be found in Section 1.3.1 and in
Section 4.1.1. The nodes may be aware of their geographical locations, and they may already be partitioned into well defined
geographical regions. In this case, these regions are the clusters, and the objective of the aggregator election protocol is to elect
an aggregator within each geographical region. We call this approach location based clustering; an example would be the
PANEL protocol. A kind of generalization of the position based election is the preset case, where the nodes know the cluster
ID they belong to before any communication. Here the goal of the election is to elect one node in every preset cluster. This
approach is used in. Alternatively, the nodes may be unaware of their locations or cluster IDs, and know only their neighbors.
In this case, the clusters are not pre-determined, but they are dynamically constructed parallel to the election of the
aggregators. Basically, any node may announce itself as an aggregator, and the nodes within a certain number of hops on the
topology graph may join that node as cluster members. We call this approach topology based clustering; an example would be
the LEACH protocol. The location based and the topology based approaches are illustrated in Figure 1.1.

Figure 1.1: Result of a location based (left), and topology based (right) one-hop aggregator election protocol. Solid dots represent the aggregators, and empty

circles represent cluster members.

Both approaches may use controlled flooding of broadcast messages. In case of location based or preset clustering, the scope of
a flood is restricted to a given geographic region or preset cluster. Nodes within that region re-broadcast the message to be
flooded when they receive it for the first time. Nodes outside of the region or having different preset cluster IDs simply drop
the message. In case of topology based clustering, it is assumed that the broadcast messages have a Time-to- Live field that
controls the scope of the flooding.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -65

 Any node that receives a broadcast message with a positive TTL value for the first time will automatically decrement the TTL
value and rebroadcast the message. Duplicates and messages with TTL smaller than or equal to zero are silently discarded.
When I say that a node broadcasts a message, I mean such a controlled flooding (location based, preset or topology based,
depending on the context). In Section 1.4, connected dominating sets (CDS) are used to implement efficient broadcast
messaging. The concept of CDS will be introduced there.

We can call the set of nodes which are (in the location based and the preset case) or can potentially be (in the topology based
case) in the same cluster as a node S the cluster peers of S. Hence, in the location based case, the cluster peers of S are the
nodes that reside within the same geographic region as node S. In the preset case, the cluster peers are the nodes sharing the
same cluster ID. In the topology based case, the set of cluster peers of S usually consists in its n-hop neighborhood, for some
parameter n. The nodes may not explicitly know all their cluster peers. The main functional requirement of any clustering
algorithm is that either node S or at least one of the cluster peers of S will be elected as aggregator. The leader of each cluster is
called cluster aggregator, or simply aggregator. In the following I will use aggregator, cluster aggregator and data aggregator
interchangeably. As mentioned in Section 1.1, an attacker can gain much more information by attacking an aggregator node
than attacking a normal node. To attack a data aggregator node either physically or logically, first the attacker must identify
that node. In this paper I assume that the attacker’s goal is to identify the aggregator (which means that simply preventing,
jamming or confusing the aggregation is not the goal of the attacker). In Section 1.1.5 I go a little further, and analyze what
happens if a compromised node does not follow the proposed protocols in order to mislead the operator.

An attacker who wants to discover the identity of the aggregators can eavesdrop the communication between any nodes, can
actively participate in the communication (by deleting modifying and inserting messages) and can physically compromise
some of the nodes. A compromised node is under the full control of the attacker, the attacker can fully review the inner state of
that node, and can control the messages sent by that node. Compromising a node is a much harder challenge for an attacker
than simply eavesdropping the communication. It requires physical contact with the node and some advanced knowledge,
however it is far from impossible for an attacker with good electrical and laboratory background [Anderson and Kuhn, 1996].
So I propose two solutions. The first basic protocol can fully withstand a passive eavesdropper, but a compromising attacker
can gain some knowledge about the identities of the cluster aggregators. The second advanced protocol can withstand a
compromising attacker as well, with only leaking information about the compromised nodes. In case of a passive adversary, a
rather simple solution could be based on a common shared global key. Using that shared global key as a seed of a pseudo
random number generator, every node can construct locally (without any communications) the same pseudo randomly ordered
list of all nodes. These lists will be identical for every node because all nodes use the same seed and the same pseudo random
number generator. Then, the first A nodes of the list are elected aggregators such that every node can communicate with a
cluster aggregator and no subset of A covers the whole system. An illustration of the result of this algorithm can be seen on
Figure 1.1 for location based and topology based cluster aggregator election. The problem with this solution is that it is not
robust: compromising a single node would leak the common key, and the adversary could compute the identifier of all cluster
aggregators. While I do not want to fully address the problem of compromised nodes in the first protocol, I still aim at a more
robust solution than the one described above. In particular, the system should not collapse by compromising just a single or a
few nodes. The second protocol can withstand the compromise of some nodes without the degradation of the privacy of the
cluster aggregators. This protocol meets the following goals and has the following limitations:

 The identity of the non-compromised cluster aggregators remains secret even in the presence of passive and active
attackers or compromised nodes.

 The attacker can learn whether the compromised node is an aggregator.
 An attacker can force a compromised node to be aggregator, but does not know anything about the existence or

identity of the other aggregators.
 The attacker cannot achieve that no aggregator is elected in the cluster, however all the elected aggregator(s) may be

compromised nodes.

The main difference between the first and second protocol is the following. The first protocol is very simple, but not perfect as
a compromised node can reveal the identity of the aggregators. The second protocol requires more complex computations, but
offers anonymity in case of node compromise as well. In some cases such complex computations are outside the capabilities of
the nodes (or the probability of compromise is low), but anonymity is still required by the system. In these cases I suggest to
use the first protocol. If the probability of node compromise is not negligible, then the use of the second protocol is
recommended.

1.3 Basic protocol
In this section, I describe the basic protocol that I propose for private aggregator node election. First I give a brief overview of
the basic principles of the protocol, and present the details later. After that, some important details of this basic protocol is
presented in Section 1.3.2, where I also describe how to set the parameters of the protocol.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -66

1.3.1 Protocol description
I assume that the nodes are synchronized for a survey on time synchronization mechanism for sensor networks), and each node
starts executing the protocol roughly at the same time. The protocol terminates after a predefined fix amount of time. During
the execution of the protocol, any node that has not received any aggregator announcement yet may decide to become an
aggregator, in which case, it broadcasts an aggregator announcement message announcing itself as a cluster aggregator. This
message is broadcast among the cluster peers of the node sending the announcement (see Section 1.2). Upon reception of a
cluster aggregator announcement, any node that has neither announced itself as a cluster aggregator nor received any such
announcement yet will consider the sender of the announcement as its cluster aggregator. In order to prevent an external
observer to learn the identity of the cluster aggregators, all messages sent in the protocol are encrypted such that only the nodes
to whom they are intended can decrypt them. For this, it is assumed that each node shares a common key with all of its cluster
peers (an overview of available key establishment mechanisms for sensor networks can be found in [Lopez and Zhou, 2008]).
In addition, in order to avoid that message originators are identified as cluster aggregators, the nodes that will be cluster
members are required to send dummy messages that cannot be distinguished from the announcements by the external observer
(i.e., they are encrypted and disseminated in the same way as the announcements).

Note that the proposed basic protocol considers only either pairwise keys between the neighboring nodes or group keys shared
between sets of neighboring nodes, so no global key is assumed. Such pairwise or group keys can be established by the
techniques proposed in [Lopez and Zhou, 2008]. The key establishment can be based on randomly selected key sets. In such a
protocol, the probability that neighboring nodes share a common key is high, and the unused keys are deleted [Chan et al.,
2003]. The key establishment can be also based on a common key which is deleted after some short time when the neighbors
are discovered [Zhu et al., 2003]. Any node that owns the common key can generate a pairwise key with a node which owns or
previously owned the common key. The basic method for exchanging a group/cluster key with the neighboring nodes is to
send the same random key to each neighbor encrypted with the previously exchanged pairwise keys. The pseudo-code of the
protocol is given in Algorithm 2, and a more detailed explanation of the protocol’s operation is presented below. The protocol
consists of two rounds, where the length of each round is Ű . The nodes are synchronized, they all know when the first round
begins, and what the value of Ű is. At the beginning, each node starts two random timers, T1 and T2, where T1 expires in the
first round (uniformly at random) and T2 expires in the second round (uniformly at random). Each node also initializes at
random a binary variable, called announFirst, that determines in which round the node would like to send a cluster aggregator
announcement.

Algorithm 2 Basic private cluster aggregator election algorithm
start T1, expires in rand(0,Ű) //timer, expires in round 1
start T2, expires in rand(Ű ,2Ű) //timer, expires in round 2
announFirst = (rand(0,1) Ò ɔ)
CAID = -1 // ID of the cluster aggregator of the node
while T1 NOT expired do
if receive ENC(announcement) AND (CAID = -1) then
CAID = ID of sender of announcement
end if
end while
// T1 expired
if announFirst AND (CAID = -1) then
broadcast ENC(announcement);
CAID = ID of node itself;
else
broadcast ENC(dummy);
end if
while T2 NOT expired do
if receive ENC(announcement) AND (CAID = -1) then
CAID = ID of sender of announcement
end if
end while
// T2 expired
if (NOT announFirst) AND (CAID = -1) then
broadcast ENC(announcement);
CAID = ID of node itself;
else
broadcast ENC(dummy);
end if

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -67

Table 1.1:: Estimate time of the building blocks on a Crossbow MICAz mote

 Algorithm
SHA-1 [Ganesan et al., 2013]
RSA 1024 bit [Piotrowski et al., 2013]
RC4[Ganesan et.al.,2014]
RC5[Ganesan et.al., 2014]

Generation [ms]
1.4
12040
0.1
0.4

Verification [ms]
-
470
0.1
0.4

The probability that announFirst is set to the first round is ɔ, which is a system parameter. The setting of ɔ is elaborated in
Section 1.3.2. In the first round, every node S waits for its first timer T1 to expire. If S receives an announcement before T1
expires, then the sender of the announcement will be the cluster aggregator of S. When T1 expires, S broadcasts a message as
follows: if announFirst is set to the first round and S has not received any announcement yet, then S sends an announcement, in
which it announces itself as a cluster aggregator. Otherwise, S sends a dummy message. In both cases, the message is
encrypted (denoted by ENC() in the algorithm) such that only the cluster peers of S can decrypt it.

The second round is similar to the first round. When T2 expires S broadcasts a message as follows: if announFirst is set to the
second round and S has not received any announcement yet, then S sends an announcement, otherwise, S sends a dummy
message. In both cases, the message is encrypted. It is easy to see that at the end of the second round each node is either a
cluster aggregator or it is associated with a cluster aggregator whose ID is stored in variable CAID. Without the second round,
a node can remain unassociated, if it sends and receives only dummy messages in the first round. In addition, a passive
observer only sees that every node sends two encrypted messages, one in each round. This makes it difficult for the adversary
to identify who the cluster aggregators are (see also more discussion on this in the next section). In addition, if a node is
compromised, the adversary learns only the identity of the cluster aggregators whose announcements have been
received by the compromised node.

In WSNs, it must be analyzed what happens if some messages are delayed or lost in the noisy unreliable channel. Two cases
must be analyzed, dummy messages and announcements. If a dummy message is delayed or not delivered successfully to all
recipients, then the result of the protocol is not modified as dummy messages serve for only covering the announcements. If an
announcement is delayed or not delivered to a node, then the recipient will not select the sender as cluster aggregator. It will
select a node who sent the announcement later or the node elects itself and sends an announcement. The message loss may
modify the resulting set of cluster aggregators, but neither harm the anonymity of the elected aggregators, nor harm the original
goal of cluster aggregator election (a node must be either a cluster aggregator or a cluster aggregator must be elected from the
nodes cluster peers). Note that two neighboring nodes can send an announcement at the same time with some small probability.
Actually, it is not a problem in the protocol. The only result is that both nodes will be cluster aggregators independently. As it
is not conflicting with the original goal of cluster aggregator election, this infrequent situation does not need any special
attention. The overhead introduced by the basic protocol is sending two encrypted messages for each election round. Other
protocols uses one (or zero) unencrypted messages to elect an aggregator. So the number of messages sent in the election phase
is slightly larger compared to other solutions. The symetric encryption also causes some extra overhead (for details, see Table
1.1, rows with RC4 and RC5).

1.3.2 Protocol analysis
In this section the previously suggested basic protocol is analyzed. As defined in Section 1.2, the main goal of the attacker is to
reveal the identity of the cluster aggregators. To do so, the attacker can eavesdrop, modify, and delete messages, and can
capture some nodes. First the logical attacks are analyzed where the attacker does not capture any nodes, then the results of a
node capture.

The attackers main goal is to reveal the identity of the cluster aggregators. As all the inter node communication is encrypted
and authenticated, it cannot get any information from the messages themselves, but it can get some side information from
simple traffic and topology analysis.

Density based attack
Thanks to the dummy messages and the encryption in the basic protocol, an external observer cannot trivially identify the
cluster aggregators; however, it can still use side information and suspect some nodes to be cluster aggregators with higher
probability than some other nodes. Such a side information is the number of the cluster peers of the nodes. This number
correlates with the local density of the nodes, that is why this attack is called density based attack. Indeed, the probability of
becoming a cluster aggregator depends on the number of the cluster peers of the node. For instance, if a node does not have
any cluster peers, it will be a cluster aggregator with probability one. On the other hand, if the node has a larger number of
cluster peers, then the probability of receiving an announcement from a cluster peer is large, and hence, the probability that the
node itself becomes cluster aggregator is small.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -68

Note also that the number of cluster peers can be deduced from the topology of the network, which may be known to the
adversary. The probability of becoming a cluster aggregator is approximately inversely proportional to the number of cluster
peers:

Pr(CA(S)) = 1 D(S) (1.1)

where CA(S) is the event of S being elected cluster aggregator, and D(S) is the number of cluster peers of node S. Figure 1.2
illustrates this proportionality where the curve belongs to Equation 1.1 and the plotted dots correspond to simulation results
(100 nodes, random deployment, one hop communication, topology based clustering). It can be seen, that Equation 1.1 is quite
sharp, it is very close to the simulated results. Two approaches can be used to mitigate this problem. One is to take the number
of cluster peers of the nodes into account when generating the random timers for the protocol. The second is to balance the
logical network topology in such a way that every node has the same number of cluster peers. In the following a possible
solution for both approaches is introduced. The first approach can be the fine tuning of the distributions. It is not analyzed here
deeply, because it can only slightly modify the probabilities of being cluster aggregator, so it has no large effect. An example
can be seen on Figure 1.3, where the 10th power of D(S) is used as a normalizing factor, when ɔ (probability of sending an
announcement in the first round) is computed. The coefficients of the polynomial are set as resulting curve is the closest to
uniform distribution. It can be seen, that modifying ɔ on a per node basis does not eventually reaches its goal, the normalized
distribution is far from uniform. Actually by modifying ɔ, the other attack discussed in the next section can be mitigated, so
here I propose a solution which does not set the ɔ parameter. The second approach modifies the number of cluster peers of a
node to reach a common value. Let us denote this value by Ŭ.

An efficient approach to mitigate this problem is to modify the number of cluster peers such that it becomes a common value Ŭ
for all of them. In theory, this common value can be anything between 1 and the total number N of the nodes in the network. In
practice, it should be around the average number of cluster peers, which can be estimated locally by the nodes. For example,
assuming one-hop communications (meaning that the cluster peers are the radio neighbors), the following formula can be used:

Figure 1.2: Probability of being cluster aggregator as a function of the number of cluster peers.

Ŭ = (N ī 1) R2ˊ A + 1 E(D(S)) (1.2)

where R is the radio range, and A is the size of the total area of the network. The formula is based on the fact that the number
of cluster peers is proportional to the ratio between radio coverage and total area. Similar formulae can be derived for the
general case of multi-hop communication. If a node S has more than Ŭ cluster peers it can simply discard the messages from
D(S) – Ŭ randomly chosen cluster peers.
 If S has less than Ŭ cluster peers it must get new cluster peers by the help of its actual cluster peers (if S has not got any cluster
peers originally, then it will always become a cluster aggregator). The new cluster peers can be selected from the set of cluster
peers of the original cluster peers. To explore the potential new cluster peers, every node can broadcast its list of cluster peers
within its few hop neighborhood before running the basic protocol. From the lists of the received cluster peers, every node can
select its Ŭ ī D(S) new cluster peers uniformly at random. Then, the basic aggregator election protocol can be executed using
the balanced set of cluster peers. An example for this balancing is shown in Figure 1.4 (70 nodes, random deployment, one hop
communication, topology based clustering). After running the balancing protocol, every node can approach the envisioned Ŭ
value. The advantage of the balancing protocol is that however an attacker can gather the information about the number of
cluster peers, this number is efficiently balanced after the protocol. The drawback of this solution is that it requires the original
cluster peers to relay messages between distant nodes. One can imagine this solution as selectively increasing the TTL of
protocol messages creating much larger neighborhoods.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -69

Order based attack
Another important side information an attacker can use is the order in which the nodes send messages in the first round of the
protocol. Indeed, the sender of the i-th message will be cluster aggregator if none of the previous i ī 1 messages are
announcements (but dummies) and the i-th message is an announcement. Thus, the probability Pi that the sender of the i-th
message becomes cluster aggregator depends on i and parameter ɔ:

Figure 1.3: Probability of being cluster aggregator as a function of number of cluster peers. The analytical values comes from Equation 1.1, while the

simulation values come from simulation, where the ɔ probabilities are normalized with the number of cluster peers of the nodes.

Pi = (1 å ɔ) i å1ɔ, 1 �7 i �7 n

The (n + 1)-th element of the distribution is the probability that no announcement is sent in the first round:

Pn+1 = (1 å ɔ) n

in which case the sender of the first message of the second round must be a cluster aggregator. The entropy of this distribution
characterizes the uncertainty of the attacker who wants to identify the cluster aggregator using the order information.
Assuming that the number of cluster peers has been already balanced, this entropy can be calculated as follows:

Figure 1.4: Result of balancing. The 70 nodes are represented on the x axis. The number of cluster peers before (left), and after (right) the balancing are

represented on the y axis.

H = å n�� +1 i =1 Pi log Pi = (1.3)

- �� n i =1 ((1 å ɔ) i å1 ɔ log ((1 å ɔ) i å1 ɔ)) –

å (1 å ɔ) n log (1 å ɔ) n
where ɔ is the probability of sending an announcement in the first round and n is the balanced number of cluster peers.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -70

Figure 1.5: Entropy of the attacker as a function of sending announcement in the first round (ɔ). Number of nodes in one cluster: 10.

In Figure 1.5, I plotted formula (1.3). If ɔ is large, then the uncertainty of the attacker is low, because one of the first few
senders will become the cluster aggregator with very high probability. If ɔ is very small, then the uncertainty of the attacker is
small again, because no cluster aggregator will be elected in the first round with high probability, and therefore, the first sender
of the second round will be the cluster aggregator. The ideal ɔ value corresponds to the maximum entropy, which can be easily
computed by the nodes locally from formula (1.3). For instance, Table 1.2 shows some ideal ɔ values for different number of
nodes in one cluster. The fifth row (Hmax) shows the maximal entropy (uncertainty) that any kind of election protocol can
achieve with the given number of nodes. This is achieved if every node is equiprobably elected from the viewpoint of the
attacker. This value is closely approached by H(ˆɔ), where ˆɔ is very close to the optimal solution (the difference between the
found value and the optimal value can be arbitrarily small, and depends on the number of iterations the estimation algorithm
uses). Using the found ˆɔ value, the order of the messages has no meaning for the attacker.

Node capture attacks
If an attacker can compromise a node, it can reveal some sensitive information, even when the system uses the local key based
protocol. If the compromised node is a cluster aggregator, then all the previously stored messages can be revealed. The attacker
can decide to demolish the node, modify the stored values, simply use the captured data, or modify the aggregation functions.

Table 1.2: Optimal ɔ values (ˆɔ) for different number of nodes in one cluster. Achieved entropy (H(ˆɔ)) and maximal entropy
(Hmax = log2 n)

n
�Â
n�Â
H�Â
Hmax

10
0.167
1.67
3.281
3.322

25
0.082
2.05
1.410
1.644

50
0.049
2.45
5.312
5.644

100
0.027
2.7
6.218
6.644

If the compromised node is not a cluster aggregator, then the attacker can reveal the cluster aggregator of that node, which can
result in the same situation described in the previous paragraph.

1.3.3 Data forwarding and querying
The problem of forwarding the measured data to the aggregators without revealing the identity of the aggregators is a well
known problem in the literature, called anonymous routing. Anonymous routing let us route packets in the network without
revealing the destination of the packet. A short overview of anonymous routing can be found in Section 1.5. With anonymous
routing any node can send the measurements to the aggregators without revealing the identity of it. An operator can query the
aggregator with the help of an ordinary node which uses anonymous routing towards the aggregator. Anonymous routing
introduces significant overhead in the traffic. However this can be partially mitigated by synchronizing the data transmissions.
Instead of suggesting such an approach, in this paper I elaborate a more challenging situation where the identity of the
aggregators is unknown to the cluster members as well in Section 4.1.3. The clear advantage is that even if a node is
compromised, it’s aggregator cannot be identified.
1.4 Advanced protocol
The advanced private data aggregation protocol is designed to withstand the compromise of some nodes without revealing the
identities of the aggregator. The protocol consists of four main parts. The first part is the initialization, which provides the
required communication channel. The second part is needed for the data aggregator election. This subprotocol must ensure that
the cluster does not remain without a cluster aggregator. This must be done without revealing the identity of the elected
aggregator. The third part is needed for the data aggregation. This subprotocol must be able to forward the measured data to the
aggregator without knowing its identifier. The last part must support the queries, where an operator queries some stored
aggregated data. In the following, the description of each subprotocol follows the same pattern. First the goal and the
requirements of the subprotocol are discussed, then the subprotocol itself is presented.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -71

 After the presentation of the subprotocol, I analyze how it achieves its goal even in the presence of an attacker, and what data
and services it provides to the next subprotocol. At the end of this section, misbehavior is analyzed. I discuss, what an attacker
can achieve,
if its goal is not to identify the aggregators of the cluster, but to confuse the operation of the protocols. In the following, it is
assumed that every node knows which cluster it belongs to. The protocol descriptions are considering only one cluster, and
separate instances of the protocol are run in different clusters independently.
The complexity of each subprotocol is summarized in Table 1.3. This table gives an overview of the message complexity of
the used subprotocols, so the bandwidth requirements can be calculated from it. It can be seen, that the rarely used election
protocol has the highest complexity, and the frequently used aggregation is the most lightweight protocol in use.

Table 1.3: Summary of complexity of the advanced protocol. N is the number of nodes in the Cluster

Message Complexity
Modular exponentiations
Hash computations

Election
0 (N2)
4N1

0

Aggregation
0 (N)
0
0

Query
0 (N)
0
1

2.1.1 Initialization
The initialization phase is responsible for providing the medium for authenticated broadcast communication. In the following, I
shortly review the approaches of broadcast authentication in wireless sensor networks, and give some efficient methods for
broadcast communication. The initialization relies on some data stored on each node before deployment. Each node has some
unique cryptographic credentials to enable authentication, and is aware of the cluster identifier it belongs to. In the following,
without further mentioning, it is assumed, that each message contains the cluster identifier. Every message addressed to a
cluster different from the one a node belongs to is discarded by the node. First, I briefly review the state of the art in broadcast
authentication, then I propose a connected dominating set based broadcast communication method, which fits well to the
following aggregation and query phases.
Broadcast authentication
Broadcast authentication enables a sender to broadcast some authenticated messages efficiently to a big number of potential
receivers. In the literature, this problem is solved with either digital signatures or hash chains. In this section, I review some
solutions from both approaches. For the sake of completeness, Message Authentication Codes (MAC) must also be mentioned
here. MACs are based on symmetric cryptographic primitives, which enable very efficient computation. Unfortunately, the
verifier of a MAC must also possess the same cryptographic credential the generator used for generating the MAC. It means
that every node must know every credential in the network, to verify every message broadcast to the network. This full
knowledge can be exploited by an attacker who compromises a node. The attacker can impersonate any other honest node,
which means that if only one node is compromised, message authenticity can no longer be ensured.

One solution to the node compromise is the hop by hop authentication of the packets. In hop by hop authentication, every
packets authentication information is regenerated by every forwarder. In this case, it is enough to only have a shared key with
the direct neighbors of a node. In case of node compromise, only the node itself and the direct neighbors can be impersonated.
Such a neighborhood authentication is provided by Zhu et al. in LEAP [Zhu et al., 2003], where it is based on so called cluster
keys. To make the authentication scheme robust against node compromise, one approach is the usage of asymmetric
cryptography, namely digital signatures. Digital signatures are asymmetric cryptographic primitives, where only the owner of a
private key can compute a digital signature over a message, but any other node can verify that signature. Computing a digital
signature is a time consuming task for a typical sensor node, but there exist some efficient elliptic curve based approaches in
the literature. One of the first publicly available implementations was the TinyECC module written by Liu and Ning. A more
efficient implementation is the NanoECC module. Proposed by Szczechowiak et al.. It is based on the MIRACL cryptographic
library. Up to now, to the best of my knowledge, the fastest implementations are the TinyPBC by Oliveira et al. [Oliveira et
al., 2008], which is based on the RELIC toolkit [rel,], and the TinyPairing proposed by Xiong et al. in. Another approach is
proposed for broadcast authentication in wireless sensor networks by Perrig et al. in. The µTESLA scheme is based on delayed
release of hash chain values used in MAC computations. The scheme needs secure loose time synchronization between the
nodes.
The µTESLA scheme is efficient if it is used for authenticating many messages, but inefficient if the messages are sparse.
Consequently, if only the rarely sent election messages must be authenticated, then the time synchronization itself can cause a
heavier workload then simple digital signatures. If the aggregation messages must also be authenticated, then µTESLA can be
an efficient solution. A DoS resistant version specially adapted for wireless sensor networks is proposed by Liu et al. in. A
faster but less secure modification is proposed by Huang et al. in [Huang et al., 2009]. In the following it is assumed, that an
efficient broadcast authentication scheme is used without any indication.

Broadcast communication

Broadcast communication is a method that enables sending information from one source to every other participant of the
network.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -72

In wireless networks it can be implemented in many ways, like flooding the network or with a sequence of unicast messages. A
natural question would be, why broadcast communication is so important to the advanced protocol? The reason is that only
broadcast communication can hide the traffic patterns of the communication, thus not revealing any information about the
aggregators. An efficient way of implementing broadcast communication in wireless sensor networks is the usage of connected
dominating set (CDS). The connected dominating set S of graph G is defined as a subset of G such that every vertex in GīS is
adjacent to at least one member of S, and S is connected. A graphical representation of a CDS can be found in Figure 1.6. The
minimum connected dominating set (MCDS) is a connected dominating set with minimum cardinality. Finding a MCDS in a
graph is an NP-Hard problem, however there are some efficient solutions which can find a close to minimal CDS in WSNs.
For a thorough review of the state of the art of CDS in WSNs, the interested reader is referred. In the following, it is assumed
that a connected dominating set is given in each cluster, and a minimum spanning tree is generated between the nodes in the
CDS. Finding a minimum spanning tree in a connected graph is a well known problem for decades. Efficient polynomial
algorithms are suggested. This kind of two layer communication architecture enables the efficient implementation of different
kind of broadcast like communications, which are required for the following protocols. The spanning tree is used in the
aggregation protocol in Section 4.1.3. The simple all node broadcast communication can be implemented simply: if a node
sends a packet to the broadcast address, then every node in the CDS forwards this message to the broadcast address. The CDS
members are connected and every non CDS member is connected to at least one CDS member by definition, so the message
will be delivered to every recipient in the network. This approach is more efficient than simple flooding as only a subset of the
nodes forwards the message, but the properties of the CDS ensures that every node in the cluster will eventually receive the
broadcast information. Here, the notion of CDS parent (or simply parent) must be introduced. The CDS parent of node A is a
node, which is in communication distance with A and is a member of the CDS.

The complexity of such a broadcast communication is O(N), but actually it takes |S| messages to broadcast some information,
where |S| is the number of nodes in the connected dominating set. If the CDS algorithm is accurate, than it can be very close to
the minimum number of nodes required to broadcast communication. In the following, broadcast communication is used
frequently to avoid that an attacker can gain some knowledge about the identity of the aggregators from the traffic patterns
inside the network. Obviously not every message is broadcast in the network, because that would shortly lead to

Figure 1.6: Connected dominating set. Solid dots represents the dominating set, and empty circles represent the remaining nodes.

The connections between the non CDS nodes of the network is not displayed on the figure. battery depletion and inoperability
of the sensor network. Instead of automatically broadcasting every message, as much information as possible is aggregated in
each message to preserve energy. In the following sections, I will use the given CDS in different ways, and each particular
usage will be described in the corresponding section. The used communication patterns are closely related to and inspired by
the Echo algorithm published by Chang in [Chang, 2006]. The Echo algorithm is a Wave algorithm, which enables the
distributed computation of an idempotent operator in trees. It can be used in arbitrary connected graphs, and generates a
spanning tree as a side result.

2.1.2 Data aggregator election
The main goal of the aggregator node election protocol is to elect a node that can store the measurements of the whole cluster
in a given epoch, but in such a way that the identity remains hidden. The election is successful if at least one node is elected.
The protocol is unsuccessful if no node is elected, thus no node stores the data. In some cases, electing more than one node can
be advantageous, because the redundant storage can withstand the failure of some nodes. In the following, I propose an
election protocol, where the expected number of elected aggregators can be determined by the system operator, and the
protocol ensures that at least one aggregator is always elected. The election process relies on the initialization subprotocol
discussed in Section 4.1.1. It requires an authenticated broadcast channel among the cluster members, which is exactly what
the initialization part offers.

The election process consists of two main steps: (i) Every node decides, whether it wants to be an aggregator, based on some
random values.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -73

This step does not need any communication, the nodes compute the results locally. (ii) In the second step, an anonymous veto
protocol is run, which reveals only the information that at least one node elected itself to be aggregator node. If no aggregator
is elected, it will be clear for every participant, and every participant can run the election protocol again.

Step (i) can be implemented easily. Every node elects itself aggregator with a given probability p. The result of the election is
kept secret, the participants only want to know that the number c of aggregators is not zero, without revealing the identity of
the cluster aggregators. This is advantageous, because in case of node compromise, the attacker learns only whether the
compromised node is an aggregator, but nothing about the identity or the number of the other aggregators. Let us denote the
random variable representing the number of elected aggregators with C. It is easy to see that the distribution of C is binomial
(N is the total number of nodes in one cluster):

Pr(C = c) = (N c) pc (1 ī p)Nīc

The expected number of aggregators after the first step is: cE = Np. So if on average ˆc cluster aggregator is needed, then p
should be ^c N (this formula will be slightly modified after considering the results of the second step). The probability that no
cluster aggregator is elected is: (1 ī p)N. To avoid this anarchical situation when no node is elected, the nodes must run step
(ii) which proves that at least one node is elected as aggregator node, but the identity of the aggregator remains secret. This
problem can be solved by an anonymous veto protocol.

Hao and Zieli´nski’s approach has many advantageous properties compared to other solutions such as it requires only 2
communication rounds. The anonym veto protocol requires knowledge proofs. Informally, a knowledge proof allows a prover
to convince a verifier that he knows a solution of a hard-to-solve problem without revealing any useful information about the
knowledge. A detailed explanation of the problem can be found in [Camenisch and Stadler, 1997]

A well known example of knowledge proof is given. The proposed method gives a non interactive proof of knowledge of a
logarithm without revealing the logarithm itself. The operation can be described briefly as follows. The proof of knowledge of
the exponent of gx i consists of the pair {gv, r = vīxih}, where h = H(g, gv, gx i , i) and H is a secure hash function.

This proof of knowledge can be verified by anyone through checking whether gv and grgxih are equal. The operation of the
anonym veto protocol consists of two consecutive rounds (G is a publicly agreed group with order q and generator g):
1. First, every participant i selects a secret random value: xi �Ð Zq. Then gx i is broadcast with a knowledge proof. The
knowledge proof is needed to ensure that the participant knows xi without revealing the value of xi. Without the knowledge
proof, the node could choose gx i in a way to influence the result of the protocol (it is widely believed that for a given gx i
(mod p) it is hard to find xi(mod p), this problem is known as the discrete logarithm problem). Then every participant checks
the knowledge proofs, and computes a special product of the received values: gyi = i�� ī1 j=1 gxj / N�� j=i+1 gxj 2. gyici is
broadcast with a knowledge proof (the knowledge proof is needed to ensure that the node cannot influence the election
maliciously afterwards). ci is set to xi for non aggregators, while a random ri value for aggregators. The product P = N�� i=1
gciyi equals to 1 if and only if no cluster aggregator is elected (none vetoed the question: Is the number of cluster aggregators
elected zero?). If no aggregator is elected, then it will be clear for all participants, and the election can be done again. If P
differs from 1, then some nodes are announced themselves to be cluster aggregators, and this is known by all the nodes. If we
consider the effect of the second step (new election is run if no aggregator is elected), the expected number of aggregators is
slightly higher than in the case of binomial distributions. The expected number of aggregators are: cE = Np 1 ī (1 ī p)N The
anonymity of the election subprotocol depends on the parts of the protocol. Obviously, the random number generation does not
leak any information about the identity of the aggregator nodes, if the random number generator is secure. A cryptographically
secure random number generator, called TinyRNG, is proposed for wireless sensor networks. Using a secure random number
generator, it is unpredictable, who elects itself to be aggregator node.
The anonymity analysis of the anonym veto protocol can be found in [Hao and Zielinski, 2006]. The anonymity is based on the
decisional Diffie-Hellman assumption, which is considered to be a hard problem. The message complexity of the election is
O(N2), which is acceptable as the election is run infrequently (N is the number of nodes in the cluster). If this overhead with
the 4 modular exponentiations (see Table 1.3 for the complexities and Table 1.1 for the estimated running times, note that RSA
is based on modular exponentiation) is too big for the application, then it can use the basic protocol described in Section 1.3.1,
where only symmetric key encryption is used. In wireless sensor networks, the links in general are not reliable, packet losses
occur in time to time. Reliability can be introduced by the link layer or by the application. As it is crucial to run the election
protocol without any packet loss, it is required to use a reliable link layer protocol for this subprotocol. Such protocols are
suggested for wireless sensor networks. As a summary, after the election subprotocol every node is equiprobably aggregator
node. The election subprotocol ensures that at least one aggregator is elected and this node(s) is aware of its status. An outside
attacker does not know the identity of the aggregators or even the actual number of the elected aggregator nodes. An attacker,
who compromised one or more nodes, can decide whether the compromised nodes are aggregators, but cannot be certain about
the other nodes.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -74

2.1.3 Data aggregation

The main goal of the WSN is to measure some data from the environment, and store the data for later use. This section
describes how the data is forwarded to the aggregator(s) without the explicit knowledge of the identifier(s) of the aggregator(s).
The data aggregation and storage procedure use the broadcast channel. If the covered area is so small or the radio range is so
large that every node can reach each other directly, then the aggregation can be implemented simply. Every node broadcasts
their measurement to the common channel, and the cluster aggregator(s) can aggregate and store the measurements. If the
covered area is bigger (which is the more realistic case), a connected dominating set based solution is proposed. In each
timeslot, each ordinary node (not member of the CDS) sends its measurement to one neighboring CDS member (to the parent)
by unicast communication. When the epoch is elapsed and all the measurements from the nodes are received, the CDS nodes
aggregate the measurements and use a modification of the Echo algorithm on the given spanning tree to compute the gross
aggregated measurement in the following way: each CDS member waits until all but one CDS neighbor sends its subaggregate
to it, and after some random delay it sends the aggregate to the remaining neighbor. This means that the leaf nodes of the tree
start the communication, and then the communication wave is propagated towards the root of the spanning tree. This behavior
is the same as the second phase of the Echo algorithm. When one node receives the subaggregates from all of its neighbors,
thus cannot send it to anyone, it can compute the gross aggregated value of

Figure 4.7: Aggregation example. The subfigures from left to right represents the consecutive steps of an average computation:

(i) The measured data is ready to send. It is stored in a format of actual average; number of data. Non CDS nodes sends the
average to their parents. (ii) The CDS nodes start to send the aggregated value to its parents. (iii) A CDS node receives an
aggregate from all of its neighbors, and starts to broadcast the final aggregated value. Nodes willing to store the value can do
so. (iv) Other CDS nodes receiving the final value rebroadcasts it. Nodes willing to store the value can do so. the network.
Then, this value is distributed between the cluster members by broadcasting it every CDS member. This second phase is
needed, so that every member of the cluster can be aware of the gross aggregated value, and the anonymous aggregators can
store it, while the others can simply discard it. The stored data includes the timeslot in which the aggregate was computed, and
the environmental variables if more than one variable (e.g. temperature and humidity) are recorded besides the value itself. The
aggregation function can be any statistical function of the measured data. Some easily implementable and widely used
functions are the minimum, maximum, sum or average. In Figure 4.7, the aggregation protocol is visualized with five nodes
and two aggregators using the average as an aggregation function. The anonymity analysis of the aggregation subprotocol is
quite simple. After the aggregation, every node possesses the same information as an external attacker can get. This
information is the aggregated data itself, without knowing anything about the identity of the aggregators.
If the operator wants to hide the aggregated data, it can use some techniques discussed in Section 1.5. The message complexity
of the aggregation is O(N), where N is the number of nodes in the cluster. This is the best complexity achievable, because to
store all the measurements by a single aggregator, all nodes must send the measurements towards the aggregator, which leads
to O(N) message complexity. In terms of latency, the advanced protocol doubles the time the aggregated measurement arrives
to the aggregator compared to a naive system, where the identity of the aggregators are known to every participant. This
latency is acceptable as in most WSN applications the time between the measurements is much longer than the time required to
aggregate the data. As mentioned in the election subprotocol, the protocol must be prepared to packet losses due to the nature
of wireless sensor networks. In the aggregation subprotocol two kind of packet loss can be envisioned: a packet can be lost
before or after the final aggregate is computed. Both cases can be detected by timers and a resend request can be sent. If the
resend is unsuccessful for sometimes, the aggregation must be run without those messages. If the lost message contains a
measurement or subaggregate, then the final aggregate will be computed without that data leading to an inaccurate
measurement. If the lost message contained the gross aggregate, then some nodes will not receive the gross aggregate. Here it
is very useful that the network can have multiple aggregators, because if at least one aggregator receives the data, the data can
be queried by the operator.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -75

Figure 4.7: Aggregation example. The subfigures from left to right represents the consecutive steps of an average computation:
(i) The measured data is ready to send. It is stored in a format of actual average; number of data. Non CDS nodes sends the
average to their parents. (ii) The CDS nodes start to send the aggregated value to its parents. (iii) A CDS node receives an
aggregate from all of its neighbors, and starts to broadcast the final aggregated value. Nodes willing to store the value can do
so. (iv) Other CDS nodes receiving the final value rebroadcasts it. Nodes willing to store the value can do so. the network.
Then, this value is distributed between the cluster members by broadcasting it every CDS member. This second phase is
needed, so that every member of the cluster can be aware of the gross aggregated value, and the anonymous aggregators can
store it, while the others can simply discard it. The stored data includes the timeslot in which the aggregate was computed, and
the environmental variables if more than one variable (e.g. temperature and humidity) are recorded besides the value itself.
The aggregation function can be any statistical function of the measured data. Some easily implementable and widely used
functions are the minimum, maximum, sum or average. In Figure 4.7, the aggregation protocol is visualized with five nodes
and two aggregators using the average as an aggregation function. The anonymity analysis of the aggregation subprotocol is
quite simple. After the aggregation, every node possesses the same information as an external attacker can get. This
information is the aggregated data itself, without knowing anything about the identity of the aggregators. If the operator wants
to hide the aggregated data, it can use some techniques discussed in Section 1.5. The message complexity of the aggregation is
O(N), where N is the number of nodes in the cluster. This is the best complexity achievable, because to store all the
measurements by a single aggregator, all nodes must send the measurements towards the aggregator, which leads to O(N)
message complexity. In terms of latency, the advanced protocol doubles the time the aggregated measurement arrives to the
aggregator compared to a naive system, where the identity of the aggregators are known to every participant. This latency is
acceptable as in most WSN applications the time between the measurements is much longer than the time required to aggregate
the data.

As mentioned in the election subprotocol, the protocol must be prepared to packet losses due to the nature of wireless sensor
networks. In the aggregation subprotocol two kind of packet loss can be envisioned: a packet can be lost before or after the
final aggregate is computed. Both cases can be detected by timers and a resend request can be sent. If the resend is
unsuccessful for some times, the aggregation must be run without those messages. If the lost message contains a measurement
or subaggregate, then the final aggregate will be computed without that data leading to an inaccurate measurement. If the lost
message contained the gross aggregate, then some nodes will not receive the gross aggregate. Here it is very useful that the
network can have multiple aggregators, because if at least one aggregator receives the data, the data can be queried by the
operator.

Figure 4.8: Query example.

The subfigures from left to right represents the consecutive steps of a query: (i) The operator sends the Q query to node O. This
node forwards it to its CDS parent. The CDS parent broadcasts the query. (ii) The CDS nodes broadcasts the query, so every
node in the network is aware of Q. (iii) Every non CDS node (except O) sends it response to its parent. (iv) The sum of the
responses is propagated back to the parent of O (including the list of responding nodes, not on the figure), who forwards it to
the operator through O. restricted to lie in an interval [A,B] such that the intervals [iA, iB] for i = 1, 2, . . . ,N are
nonoverlapping, then cM can fall only into interval [cA, cB], and hence, c can be uniquely determined by the operator by
checking which interval Rǋ belongs to. Then, dividing Rǋ with c gives the requested data M. More specifically, and for practical
reasons, the following three criteria need to be satisfied by the interval [A,B] for my query scheme to work: (i) as we have seen
before, for unique decoding of cM, the intervals [iA, iB] for i = 1, 2, . . . ,N must be non-overlapping, (ii) in order to fit in the
messages and to avoid integer overflow3, the highest possible value for cM, i.e., NB must be representable with a pre-specified
number L, and (iii) it must be possible to map a pre-specified number D of different values into [A,B].

The first criterion (i) is met, if the lower end of each interval is larger than the higher end of the preceding interval:
0 < iA ī (i ī 1)B = i(A ī B) + B, i = 1, . . . ,N

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -76

Note that if the above inequality holds for i = N, then it holds for every i, because A ī B is a negative constant and B is a
positive constant. So it is enough to consider only the case of
 i = N: 0 < N(A ī B) + B B < N Nī1A (1.5)
The second criterion (ii) means that
BN < L B < L N (1.6)
while the third criterion (iii) can be formalized as
D < B – A B > A + D (4.7)
Figure 4.9 shows an example for a graphical representation of the three criteria, where the crossed area represents the
admissible (A,B) pairs. It can also be easily seen in this figure that a solution exists only if the B coordinate of the intersection
of inequalities (1.5) and (4.7) meets criterion (1.6), or in other words

Figure 4.9: Graphical representation of the suitable intervals

As a numerical example, let us assume, that we want to measure at least 100 different values (D = 99), the micro-controller is a
16 bit controller (L = 216), and we have at most 20 nodes in each cluster (N = 20). Then a suitable interval that satisfies all
three criteria would be [A,B] = [2000 ī 2100]. Checking that this interval indeed meets the requirements is left for the
interested reader. Finally, note that any real measurement interval can be easily mapped to this interval [A,B] by simple scaling
and shifting operations, and my solution requires that such a mapping is performed on the real values before the execution of
the query protocol. Our proposed protocol has many advantageous properties. First, the network can respond to a query if at
least one aggregator can successfully participate in the subprotocol. Second, the operator does not need to know the identity of
the aggregators, thus even the operator cannot leak that information accidentally (although, after receiving the response, the
operator learns the actual number of the aggregator nodes). Third, the protocol does not leak any information about the identity
of the aggregators: an attacker can eavesdrop the query information Q, and the Ri pseudo random numbers, but cannot deduce
from them the identity of the aggregators. Finally, the message complexity of the query is O(N), where N is the number of
nodes in the cluster. This is the best complexity achievable, when the originator of the query does not know the identity of the
aggregator(s). The latency of the query protocol depends on the longest path of the network rooted at node O. As mentioned in
the previous subprotocols, the protocol must be prepared to packet losses due to the nature of wireless sensor networks. Due to
the packet losses, the final sum R is the sum of the responding nodes which is a subset of all nodes. That is why the identifiers
must be included in the responses. The operator can calculate cM independently from the actual subset of responders. If at least
one response from an aggregator gets to the operator, it can calculate M in the previously described way. If cM = 0, then it is
clear for the operator that every aggregators’ response is lost.

2.1.5 Misbehaving nodes
In this section, I look beyond my initial goal. I briefly analyze what happens if a compromised node deviates from the protocol
to achieve some goals other than just learning the identity of the aggregators. In the election process, a compromised node may
elect itself to be aggregator in every election. This can be a problem if this node is the only elected aggregator, because a
compromised node may not store the aggregated values. Unfortunately this situation cannot be avoided in any election
protocol, because an aggregator can be compromised after the election, and the attacker can erase the memory of that node.
Actually my protocol is partially resistant to this attack, because more than one aggregator may be elected with some
probability, and the attacker cannot be sure if the compromised node is the single aggregator node in the cluster. During the
aggregation, a misbehaving node can modify its readings, or modify the values it aggregates. The modification of others’
values can be prevented by some broadcast authentication schemes discussed in Section 4.1.1. The problem of reporting false
values can be handled by statistical approaches discussed. The most interesting subprotocol from the perspective of
misbehaving nodes is the query protocol. In this protocol, a compromised node can easily modify the result of the query in the
following way. A compromised node can add an arbitrary number X to the hash in Equation (1.4) instead of using 0 or M. It is
easy to see, that if X is selected from the interval [A,B], then after subtracting the hashes, the resulting sum Rǋ will be an integer
in the interval [(c+1)A, (c+1)B] (c is the actual number of aggregators, c + 1 nodes act like aggregators, the c aggregator and
the compromised node). A compromised node can further increase its influence by choosing X from the interval [iA, iB].

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -77

This means that the resulting sum Rǋ will be in the interval [(c + i)A, (ci)B]. If X is not selected from interval [jA, jB], j = 1 . .
.N, then the result can be outside of the decidable intervals. This can be immediately detected by the operator (see Figure 1.10).
If the result is in a legitimate interval (Líj,Rǋ Lò [jA, jB]), then the operator can further check the consistency by calculating Rǋ
mod j. If the result is zero, then it is possible, that no misbehaving node is present in the network. If the result is non zero, the
operator can be sure, that apart from the zeros and Ms, some node sent a different value, thus a misbehaving node is present in
the network. It is hard for the attacker to guess j, because it neither knows the actual number of aggregators, nor can calculate
Rǋ from R by subtracting the unknown hashes. If the modulus is zero, but the operator is still suspicious about the result, it can
further test the cluster for misbehaving nodes with the help of the aggregated bit in the queries. This further testing can be done
regularly, randomly, or on receiving suspicious results. If the aggregated bit is cleared in a query Q, then the CDS nodes does
not sum the incoming replies, but forward them towards the agent O node as they are received. So if the operator wants to
check if a misbehaving node is present in the network it can run a query Q with aggregated bit set, and then run the same query
with cleared aggregated bit. If the two results are different, then the operator can be sure, that a node wants to hide its
malicious activity from the operator. If the two sums are equal, then the operator can further check the results from the second
round. If the values are all equal after subtracting the hashes (not considering the zero values), then no misbehavior is detected,
otherwise some node(s) misbehave in the cluster.

Note here, that this algorithm does not find every misbehavior, but the misbehaviors not detected by this algorithm does not
influence the operator. For example, two nodes can misbehave such that the first adds S to its hash and the second adds īS. It
is clear that this misbehaviour does not affect the result computed by the operator, because S ī S = 0. Other misbehavior not
detected by the algorithm if a compromised non aggregator node sends M instead of 0. This is not detected by the algorithm,
but not modifies the result the operator computes. The operation of misbehavior detection algorithm is depicted on Figure 1.10.
This algorithm only detects if some misbehavior is occurred in the cluster, but does not necessarily find the misbehaving node.
I left the elaboration of this problem for future work.

3 Related work
A survey on privacy protection techniques for WSNs is provided where they are classified into two main groups: data-oriented
and context oriented protection. In this section, I briefly review these techniques, with an emphasis on those solutions that are
closely related to my work. In data-oriented protection, the confidentiality of the measured data must be preserved. It is also a
research direction how the operator can verify if the received data is correct. The main focus is on the confidentiality in, while
the verification of the received data is also ensured in. According to context oriented protection covers the location privacy of
the source and the base station. The source location privacy is mainly a problem in event driven networks, where the existence
and location of the event is the information, which must be hidden. The location privacy of the base station is discussed in. The
main difference between hiding the base station and the in network aggregators is that a WSN regularly contains only one base
station which is a predefined node, while at the same time there are more in network aggregators used in one network, and the
nodes used as aggregators are periodically changed. The problem of private cluster aggregator election in wireless sensor
networks is strongly related to anonym routing in WSNs. The main difference between anonym routing and anonymous
aggregation is that anonym routing supports any traffic pattern and generally handles external attackers, while anonymous
aggregation supports aggregation specific traffic patterns and can handle compromised nodes as well. In an efficient
anonymous on demand routing scheme called ARM is proposed for mobile ad hoc networks.

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -78

Figure 1.10: Misbehaviour detection algorithm for the query protocol.

�4�ñ= �4FÍ �D(�3|�G1)�Ç

�ç�@�5

�Ì�,���4�ñ�Ð[�,�#,�,�$]

�4’���I�K�@���F��
= ��0

�(�Q�N�P�D�A�N���%�D�A�?�G

�/�E�O�>�A�D�=�R�E�K�Q�N

�5�A�J�@���3���M�Q�A�N�U���S�E�P�D���=�C�C�N�A�C�=�P�A

�����4�A�?�A�E�R�A���41���8�=�H�Q�A�O

�41 = �41 F�D(�3|�G)

Í �41 = �4
�Ç

�ç�@�5

=

�/�E�O�>�A�D�=�R�E�K�Q�N

�Ì�/�4 1 = 0���R���4�ñ= �/
Misbehaviour

Misbehaviour

�/�E�O�>�A�D�=�R�E�K�Q�N

�0�1

�;�'�5

�/�E�O�>�A�D�=�R�E�K�Q�N

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 3, Volume 1 (November 2014) www.irjcs.com

__
© 2014, IRJCS- All Rights Reserved Page -79

For the same problem another solution is given in (MASK), where a detailed simulation is also presented for the proposed
protocol. A more efficient solution is given in, which uses low cryptographic overhead, and addresses some drawbacks of the
two papers above. In privacy preserving communication system (PPCS) is proposed. PPCS provides a comprehensive solution
to anonymize communication endpoints, keep the location and identifier of a node unlinkable, and mask the existence of
communication flows. The security of different aggregator node election protocols is surveyed. Most protocols are aiming at
no security on the election, or they aim at the non-manipulability of the election. Such protocols are can withstand passive
attacks, or active attacks as well.

4 Conclusion
In wireless sensor networks, in-network data aggregation is often used to ensure scalability and energy efficient operation.
However, as we saw, this also introduces some security issues: the designated aggregator nodes that collect and store
aggregated sensor readings and communicate with the base station are attractive targets of physical node destruction and
jamming attacks. In order to mitigate this problem, in this paper, I proposed two private aggregator node election protocols for
wireless sensor networks that hide the elected aggregator nodes from the attacker, who, therefore, cannot locate and disable
them. My basic protocol provides fewer guarantees than my advanced protocol, but it may be sufficient in cases where the risk
of physical compromise of nodes is low. My advanced protocol hides the identity of the elected aggregator nodes even from
insider attackers, thus it handles node compromise attacks too. I also proposed a private data aggregation protocol and a
corresponding private query protocol for the advanced version, which allow the aggregator nodes to collect sensor readings
and respond to queries of the operator, respectively, without revealing any useful information about their identity. My
aggregation and query protocols are resistant to both external eavesdroppers and compromised nodes participating in the
protocol. The communication in the advanced protocol is based on the concept of connected dominating set, which suits well
to wireless sensor networks. In this paper I went beyond the goal of only hiding the identity of the aggregator nodes. I also
analyzed what happens if a malicious node wants to exploit the anonymity offered by the system, and tries to mislead the
operator by injecting false reports. I proposed an algorithm that can detect if any of the nodes misbehaves in the query phase. I
only detect the fact of misbehaviour and leave the identification of the misbehaving node itself for future work. In general, my
protocols increase the dependability of sensor networks, and therefore, they can be applied in mission critical sensor network
applications, including high-confidence cyber-physical systems where sensors and actuators monitor and control the operation
of some critical physical infrastructure.

Reference
[1]. M. Abadi and C. Fournet. Private authentication. Theoretical Computer Science, 322(3):427–476, 2004.
[2]. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a survey. Computer networks,

38(4):393–422, 2013.
[3]. R. Anderson and M. Kuhn. Tamper resistance: a cautionary note. In Proceedings of the 2nd conference on Proceedings of

the Second USENIX Workshop on Electronic Commerce-Volume 2, page 1. USENIX Association, 2009.
[4]. M. Aoki and H. Fujii. Inter-vehicle communication: Technical issues on vehicle control application. Communications

Magazine, IEEE, 34(10):90–93, 2011.
[5]. A.R. Beresford and F. Stajano. Mix zones: User privacy in locationaware services. In Pervasive Computing and

Communications Workshops, 2004. Proceedings of the Second IEEE Annual Conference on, pages 127–131. IEEE,
2014.

[6]. Z. Berki. Development of Traffic Models on the basis of Passanger Demand Surveys Thesis of the PhD dissertation. PhD
thesis, Budapest University of Technology and Economics, 2014.

[7]. M. Beye and T. Veugen. Improved anonymity for key-trees? Technical report, Cryptology ePrint Archive, Report
2011/395, 2013.

[8]. M. Beye and T. Veugen. Anonymity for key-trees with adaptive adversaries. Security and Privacy in Communication
Networks, pages 409–425, 2013.

[9]. Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete logarithms. Technical report,
Department of Computer Science, ETH Z¨urich, 2010.

[10]. B. Carbunar, Y. Yu, L. Shi, M. Pearce, and V. Vasudevan. Query privacy in wireless sensor networks. In Sensor, Mesh
and Ad Hoc Communications and Networks, 2007. SECON’07. 4th Annual IEEE Communications Society Conference
on, pages 203–212. IEEE,2012.

[11]. H. Chan and A. Perrig. Security and privacy in sensor networks. Computer, 36(10):103–105, 2013.
[12]. H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor networks. In IEEE Symposium on

Security and Privacy, pages 197–215. IEEE Computer Society, 2013.
[13]. E.J.H. Chang. Echo algorithms: Depth parallel operations on general graphs. Software Engineering, IEEE Transactions

on, (4):391–401, 2012

