
 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 05, Volume 4 (May 2017) SPECIAL ISSUE www.irjcs.com

IRJCS: Impact Factor Value – SJIF: Innospace, Morocco (2016): 4.281

Indexcopernicus: (ICV 2015): 79.58
© 2014- 17, IRJCS- All Rights Reserved Page -93

Time Based Resource Scheduling At Phase Level of Map

Reduce Framework

Mary Vidya John1, J Brundha Elci2, Sudha D3
Department of CSE,

 Vemana Institute of Technology,
Bengaluru-560 034,India

Abstract: Recently, the generation of data is massive due to rapid developments of big data technologies. The concept of
Mapreduce is introduced to tackle the high generation of data. Mapreduce becomes an eminent parallel paradigm that
efficiently handles the data under clusters. Generally, it contains a set of jobs and each jobis processed in two phases,
namely, Map and Reduce phases. The task of Mapreduce framework is to efficiently achieve the successful completion of
jobs at stipulated time. Prior works poses the challenges like scalability and reliability. In this paper, we have proposed
time based resource scheduling at phase level of Mapreduce framework. The proposed architecture contain three entities,
namely, phase based scheduler, node manager and job progress monitor. The role of job progress monitor is to order the
jobs and processed for executing under node manager. By doing so, the redundancy rate is completely eliminated.
Experimental analyses were carried out in Apache Hadoop 0.20.2 on a 16 node cluster. From the results, it is inferred
that our enhanced job scheduler works better than prior PRISM model.

Keywords: Mapreduce framework, Job submission order, Resource scheduling, Hadoop and Job progress monitor.

I. INTRODUCTION

Nowadays, the generation of data is profound due to cloud technologies. The maintenance and handling of such a huge data
is a cumbersome task. Applications like image processing, data analytics etc will generate huge amount of data. The
decisions making over data-driven technologies are being studied by most of the researchers. This kind of domain is known
as ‘big data’ [1].The primitive issues like heterogeneity, scale, complexity and privacy are also throws in big data which
degrades the value of the data. The generated data is not in structured form, for an instance, Tweets and blogs. Analysis over
such kind of data poses major challenges. The value of the data gets decreases when it’s linked with other data. Henceforth,
data integration is the major creator of data value. Linkage of the data and its study is the vital part of the data integration and
analysis module [2].

In order to recover from the data integration issues, Hadoop, programming language for large data sets that constructs
scalable and distributed applications. The large datasets is analyzed by the Hadoop using its Mapreduce framework.
Companies like Amazon, Cloudera, IBM, Intel, Twitter, Facebook and others are formulate their immensely enormous data
message and providing insight into where the market is headed utilizing Apache Hadoop technology. In the recent years, the
concept of Mapreduce is applied in wide-ranging data processing systems. Mapreduce framework consists of two phases,
namely, Map and Reduce [3]. The role of map phase is to represent the data in structured form whereas reduce phase is to
allocated the jobs to its concern part. Reduce task will execute after the map tasks. Mapreduce framework is simply known as
functional oriented programming language. The objective of Mapreduce is to distribute the data for parallel process and data
transfers between numerous parts of the framework.

The mapper is the function that processes the data by reading all the data and returns the list of key-value pairs. Each pair of
data contains object that processed and the value is transferred to reducer. It is represented as <key, value>. The reducer is
the function that reads the intermediate data from Mapper and reduces the objects processing based on user-defined reduce
function. The reducer function is generated as<and,1>; <more,2> [5].The rest of the paper is organized as follows: Section II
describes the related work; Section III describes the proposed work; Section IV describes the experimental analysis and
concludes in Section V.

http://www.irjcs.com

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 05, Volume 4 (May 2017) SPECIAL ISSUE www.irjcs.com

IRJCS: Impact Factor Value – SJIF: Innospace, Morocco (2016): 4.281

Indexcopernicus: (ICV 2015): 79.58
© 2014- 17, IRJCS- All Rights Reserved Page -94

Fig.1 Hadoop Architecture

II. RELATED WORK
This section depicts the existing scheduling algorithm studied by various researchers. They are explained as follows:

A) EXISTING SCHEDULER

a) Default FIFO scheduler
HADOOP make use of First in First out (FIFO) scheduling process for assigning the tasks. When any job is being entered, it
will be fragmented into sub-tasks. Each subtask are queued up and then processed [6]. Task tracker node is presented to
assign the jobs. Scheduling process in FIFO is easy to handle and to execute. It doesn’t have fair resource allocation.

b) Fair Scheduler
Fair scheduler was developed by facebook developers. It aims to allocate the resources in fairly manner. Each job acquires
fair resources. By doing so, the time taken for executing the job is very low. A set of pools were generated for each job in fair
scheduler process [6]. If the pools do not get fair share then there is provision of preemption in fair scheduling. In such case
scheduler can kill the tasks in pools that are lastly allocated. This will reduce the wasted computation. The preemption do not
cause the preempted job to fail, only makes them longer to finish.

c) Capacity scheduling
Fair scheduler makes use of capacity scheduler. Capacity scheduler is introduced by Yahoo. Instead of pools, the assigned
job resides in queue [7].Queues consist of configurable map and reduce slots and capacity of the queue is also determined.
The unused capacity is further shared to other set of jobs. Generally higher priority tasks are executed before small priority
task. In capacity scheduler there is strict access control on queues. These access controls are defined on per queue basis.

d) Longest Approximation Time to End (LATE)
Prior scheduler executes slower when no. of assigned jobs is higher. Due to the overload of CPU and slow background
process, this demerit occurs. It is resolved by the speculative execution system [7]. This system assists to improve the
performance of the jobs. It is restricted to perform in heterogeneous environment. Using this approach significant
improvement in the job response time over the default speculative execution can be obtained.

e) Delay Scheduling
Delay scheduler resolves the issues posted by fair scheduler. It throws errors like sticky slots and hardest scheduling process.
The first problem is with small jobs. The input rate is very low in small jobs and thus wastage of memory [8]. When there is
small job at head-of-line, it is unlikely to have data locally on the node that is given to it. Facebook observed this head-of-
line scheduling problem in version of HFS without delay scheduling. The second problem is the stick slot. Each job holds its
tendency. The problem occurs if strict queuing order is followed, then it not always possible to schedule the job with local
data. Delay scheduling executes all jobs in the scheduler.

f) Dynamic Priority scheduling
This sort of scheduling supports dynamic job allocations. It parallelly executes both the static and dynamic users. The slots
are equally shared using Mapreduce framework. The time period set for dynamic process is 10 sec to 1 min. It also supports
preemption scheduling process and allocated to other users. It behaves like fair scheduler when all queues are configured
with same share and there is very large allocation interval [9].

http://www.irjcs.com

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 05, Volume 4 (May 2017) SPECIAL ISSUE www.irjcs.com

IRJCS: Impact Factor Value – SJIF: Innospace, Morocco (2016): 4.281

Indexcopernicus: (ICV 2015): 79.58
© 2014- 17, IRJCS- All Rights Reserved Page -95

B) RELATED WORKS
Owing to the restricted locality services, the rate of data transfer might degrade. Locality is the significant part of the shared
resource environment. The author in [10] designed fair scheduler that consists of 500 nodes. They executed all jobs using
delay scheduler. Based on the locality, the delay scheduler worked two times better than other scheduler. The author in [11]
studied about the network location based job scheduler. Then the study was further extended to heuristic based task
scheduling systems. Network location and workload of the clusters are being monitored and then scheduling executes.
Mapreduce system was further enhanced in two-phase computation. Deadline constraint [12] is set for each assigned jobs.
After a job is submitted, the ability of scheduler is to be estimated whether the job can be accomplished within the specified
deadline or not. Based on the different deadlines of jobs [13], the scheduler will deploy different number of slots to them to
satisfy the specified deadline. The author in [14] studied about the re-allocation of resource provisioning to the assigned jobs.
Jobs rules are defined under Mapreduce environment. The author in [15] studied about the workload management systems
for job ordering processes. The three mechanisms they considered are: a policy for job ordering in the processing queue; a
mechanism for allocating a tailored number of map and reduce slots to each job with a completion time requirement; a
mechanism for allocating and reallocating spare resources in the system among the active jobs [16]. They implemented a
novel deadline-based Hadoop scheduler that integrates all these three mechanisms. The Mapreduce concept is applied in both
soft and hard real-time applications [17]. Amazon EC2 cloud was used for implementation in Hadoop middleware system.
They formulated the offline scheduling of real-time Mapreduce jobs on a heterogeneous distributed Hadoop architecture as a
constraint satisfaction problem (CSP) [18], and proposed heuristic method for the online scheduling. The author in [19]
framed enhanced Mapreduces systems that examined job scheduling with and without cost function. Based on this cost
model, resources could be optimized to minimize the cost under a deadline or minimize the time under certain budget.

III. ENHANCED JOB SCHEDULER – TIME BASED RESOURCE SCHEDULER AT PHASE LEVEL

This section depicts the working of enhanced job scheduler using Mapreduce frame work. Prior works are carried out in task
–level based resource scheduling process. By doing so, the issues faced are the scalability and reliability. Scalability issue
occurs when the no.of nodes increases in the clusters. As no. of nodes increases, the scheduler will slowly execute the job
which poses reliability issue. To resolve these primitive issues, we have proposed job ordering optimization technique via
phase-level resource scheduling process. First, we will discuss about the phase-level resource scheduling process. A fine
grained phase- level resource scheduling is done for each task. The aim of the study is to achieve higher resource utilization
using phase-level schedulers. The unique characteristics of our system are that the allocation of resources at phase level and
the succeeding jobs are executed only after the completion of preceding jobs. Some resources are paused for the avoidance of
resource contention. Hence, the job running time is leveraged and performed better than task-level schedulers. Job owners
assign the tasks to its coordinates at phase-level. The proposed architecture consist of three components, namely, a) Master
node which contain phase-level scheduler b) Local node managers who controls its coordinators with schedulers and c)
Progress monitor who monitors the job’s performance at phase level programmes. In addition to that, job ordering
optimization is also studied at job progress monitor in phase level, in order to achieve better lifespan, total job completion
time and reduce the redundancy rate.

Consider Mapreduce job Ji which contain two phases, namely, map phases M and reduce phases R. Each phase contains
several tasks and each task is divided into sub-tasks. Jobs reside at map phase is represented as | Ji

M| and | Ji
R| is represented

for jobs at reduce phase. The time taken for executing the jobs is denoted as t i,j
M and t i,j

R. The set of jobs J= {J1, J2….Jn} are
executed at certain order. The job submission order is given as ϕ.

The proposed steps are as follows:

i) Node manager sends heartbeat message to its scheduler.
ii) The schedulers reply back when any task to be scheduled with job scheduling request.
iii) Local node manager processes the received request to scheduler via heartbeat message.
iv) Once the jobs are ready to perform inside the scheduler, the time taken for completing jobs from map to reduce phase is

formulated as:

T୧, T୧ୖ = (
∑ t୧,୨

|
|

୨ୀଵ

|S| ,
∑ t୧,୨ୖ

|
|

୨ୀଵ

|Sୖ|

v) Then the jobs J inside the scheduler are partitioned and ordered. Let JA and JB are the two independent set of jobs.

J = {J୧|(J୧ ∈ J)^	(T୧ ≤	T୧ୖ)}
J = {J୧|(J୧ ∈ J)^	(T୧ > T୧ୖ)}

vi) Jobs at A are ordered from left to right by non-decreasing Ti
M and similarly jobs at B are ordered from left to right by

non-increasing Ti
R.

http://www.irjcs.com

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 05, Volume 4 (May 2017) SPECIAL ISSUE www.irjcs.com

IRJCS: Impact Factor Value – SJIF: Innospace, Morocco (2016): 4.281

Indexcopernicus: (ICV 2015): 79.58
© 2014- 17, IRJCS- All Rights Reserved Page -96

vii) The ordered jobs J’ are placed by joining the jobs at A and B. Then, the job submission order ᶫ: J’=
{(JA), (JB)}.

viii) Node manager receives the ordered jobs and executes the jobs. The node manager will also intimate the next phase of
jobs to be executed.

ix) Once all the jobs are processed, the node manager notifies the completed jobs to scheduler.

Fig.2Proposed architecture

Fig.3Data flow diagram for the Hadoop job processing systems

IV. EXPERIMENTAL RESULTS

This section depicts the experimental settings used for validating the enhanced scheduler. We deployed Apache Hadoop
0.20.2 on a 16 node cluster, with one node acting as the master managing the other 15 slave nodes. Each machine has a
Quad-core Xeon CPU with 12 GB of memory and 1 TB local disk storage. We modified the default task tracker in Hadoop
0.20.2 to monitor the execution of phases inside each task. The Table 1 depicts the configured parameter of each node. Files
size of 1024, 2048 and 3072 MB are analyzed under CPU. Each set of jobs is tested two times.

TABLE 1: CONFIGURED PARAMETER OF EACH NODE

ALGORITHM FILES IN MB 1ST LEVEL 2ND LEVEL JOB COMPLETION TIME (S)
PRISM 1024 593 536 523.5
Enhanced job scheduler 1024 556 510 451
PRISM 2048 1689 1356 1452
Enhanced job scheduler 2048 1256 1156 1325
PRISM 3072 2250 2136 2336.0
Enhanced job scheduler 3072 2369 2285 2005.6

http://www.irjcs.com

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 05, Volume 4 (May 2017) SPECIAL ISSUE www.irjcs.com

IRJCS: Impact Factor Value – SJIF: Innospace, Morocco (2016): 4.281

Indexcopernicus: (ICV 2015): 79.58
© 2014- 17, IRJCS- All Rights Reserved Page -97

Fig.4Ordered Jobs in Mapreduce framework

Fig.5Graph for job completion time at phase level scheduler

V. CONCLUSION

The rapid advancements of hardware and software technologies have witnessed the emergence of Mapreduce framework. A
massive amount of resource provisioning is required by the web services which should be scalable, flexible, and reliable in
manner. Despite of its success, prior resource provisioning schemes are yet to be devised. In order to tackle the issue, we
have proposed time based resource scheduling process in phase level. The aim of the study is to achieve higher resource
utilization using phase-level schedulers. The unique characteristics of our system are that the allocation of resources at phase
level and the succeeding jobs are executed only after the completion of preceding jobs. Some resources are paused for the
avoidance of resource contention. Hence, the job running time is leveraged and performed better than task-level schedulers.
Experimental analyses were carried out in Apache Hadoop 0.20.2 on a 16 node cluster. From the results, it is inferred that our
enhanced job scheduler works better than prior PRISM model.

REFERENCES

[1]. Qi Zhang et al, “PRISM: Fine-Grained Resource-Aware Scheduling for MapReduce”, IEEE transactions on cloud
computing, 3(2), 2015.

[2]. Apache hadoop [Online]. Available: http://hadoop.apache.org, 2015.
[3]. How many maps and reduces [Online]. Available: http://wiki.apache.org/hadoop/HowMany,MapsAndReduces, 2014.
[4]. Lognormal distribution [Online]. Available: http://en.wikipedia.org/wiki/Log-normal_distribution, 2015.
[5]. The scheduling problem [Online]. Available: http://riot.ieor.berkeley.edu/Applications/Scheduling/algorithms.html,

1999.
[6]. S. R. Hejazi and S. Saghafian, “Flowshop-scheduling problems with makespan criterion: A review,”Int. J. Production

Res., vol. 43, no. 14, pp. 2895–2929, 2005.
[7]. S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou, “Re-optimizing data-parallel computing,” inProc.

9th USE-NIX Conf. Netw. Syst. Design Implementation, 2012, p. 21.
[8]. P. Agrawal, D. Kifer, and C. Olston, “Scheduling shared scans of large data files,” Proc. VLDB Endow., vol. 1, no. 1,

pp. 958–969, Aug. 2008.
[9]. W. Cirne and F. Berman, “When the herd is smart: Aggregate behavior in the selection of job request,”IEEE Trans.

Parallel Distrib. Syst., vol. 14, no. 2, pp. 181–192, Feb. 2003.

0
500

1000
1500
2000
2500

1024 2048 3072

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Files size (Mb)

PRISM

Enhanced JS

http://www.irjcs.com
http://hadoop.apache.org,
http://wiki.apache.org/hadoop/HowMany,MapsAndReduces,
http://en.wikipedia.org/wiki/Log-normal_distribution,
http://riot.ieor.berkeley.edu/Applications/Scheduling/algorithms.html,

 International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
 Issue 05, Volume 4 (May 2017) SPECIAL ISSUE www.irjcs.com

IRJCS: Impact Factor Value – SJIF: Innospace, Morocco (2016): 4.281

Indexcopernicus: (ICV 2015): 79.58
© 2014- 17, IRJCS- All Rights Reserved Page -98

[10]. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears, “Mapreduce online,” in Proc. 7th

USENIX Conf. Netw. Syst. Design Implementation, 2010, p. 21.
[11]. J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-ing on large clusters,” in Proc. 6th Conf. Symp. Oper.

Syst. Design Implementation, 2004, vol. 6, p. 10.
[12]. J. Dittrich, J.-A.-Quiane Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad, “adoop++: Making a yellow elephant run

like a cheetah (without it even noticing),” Proc. VLDB Endowment, vol. 3, nos. 1–2, pp. 515–529, Sep. 2010.
[13]. P.-F. Dutot, L. Eyraud, G. Mounie, and D. Trystram, “Bi-criteria algorithm for scheduling jobs on cluster platforms,”

inProc. 16th Annu. ACM Symp. Parallelism Algorithms Archit., 2004, pp. 125–132.
[14]. P.-F. Dutot, G.Mounie, and D. Trystram, “Scheduling parallel tasks: Approximation algorithms,” in Handbo ok of

Scheduling: Algorithms, Models, and Performance Analysis, J. T. Leung, Ed. Boca Raton, FL, USA: CRC Press, ch.
26, pp. 26-1–26-24.

[15]. A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata, “Column-oriented storage techniques for mapreduce,”Proc. VLDB
Endow-ment, vol. 4, no. 7, pp. 419–429, Apr. 2011.

[16]. J. Gupta, A. Hariri, and C. Potts, “Scheduling a two-stage hybrid flow shop with parallel machines at the first
stage,”Ann. Oper. Res., vol. 69, pp. 171–191, 1997.

[17]. J. N. D. Gupta, “Two-stage, hybrid flow shop scheduling problem,”J. Oper. Res. Soc., vol. 39, no. 4, pp. 359–364, 1988
[18]. H. Herodotou and S. Babu, “Profiling, what-if analysis, and cost-based optimization of mapreduce programs,”Proc.

VLDB Endowment, vol. 4, no. 11, pp. 1111–1122, 2011.
[19]. H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu, “Starfish: A self-tuning system for big

data analy-tics,” inProc. 5th Conf. Innovative Data Syst. Res., 2011, pp. 261–272.

http://www.irjcs.com

